Inverse zero-sum problems in finite Abelian p-groups
نویسندگان
چکیده
منابع مشابه
Inverse zero-sum problems in finite Abelian p-groups
— In this paper, we study the minimal number of elements of maximal order within a zero-sumfree sequence in a finite Abelian p-group. For this purpose, in the general context of finite Abelian groups, we introduce a new number, for which lower and upper bounds are proved in the case of finite Abelian p-groups. Among other consequences, the method that we use here enables us to show that, if we ...
متن کامل2 00 8 INVERSE ZERO - SUM PROBLEMS IN FINITE ABELIAN p - GROUPS by Benjamin Girard
— In this paper, we study the minimal number of elements of maximal order within a zero-sumfree sequence in a finite Abelian p-group. For this purpose, in the general context of finite Abelian groups, we introduce a new number, for which lower and upper bounds are proved in the case of finite Abelian p-groups. Among other consequences, the method that we use here enables us to show that, if we ...
متن کاملINVERSE ZERO - SUM PROBLEMS IN FINITE ABELIAN p - GROUPS by Benjamin Girard
— In this paper, we study the minimal number of elements of maximal order within a zero-sumfree sequence in a finite Abelian p-group. For this purpose, in the general context of finite Abelian groups, we introduce a new number, for which lower and upper bounds are proved in the case of finite Abelian p-groups. Among other consequences, the method that we use here enables us to show that, if we ...
متن کاملZero-sum problems in finite groups
We develop new methods for investigating problems of zero-sum type in general finite groups. We establish a new bound on Davenport’s constant for abelian groups that assymptotically improves the previously known bounds. We use tools from Representation Theory to study properties of zero-sum sequences through nilpotent ideals of group algebras. A new relationship between zero-sum problems and mu...
متن کاملOn Zero-sum Subsequences in Finite Abelian Groups
Let G be a finite abelian group and k ∈ N with k exp(G). Then Ek(G) denotes the smallest integer l ∈ N such that every sequence S ∈ F(G) with |S| ≥ l has a zero-sum subsequence T with k |T |. In this paper we prove that if G = Cn1 ⊕ · · · ⊕ Cnr is a p-group, k ∈ N with k exp(G) and gcd(p, k) = 1, then Ek(G) = ⌊ k k − 1 r ∑
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2010
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm120-1-2